

Basic Skills

- Find the values of p for which the equation $x^2 - px + p + 3 = 0$ has equal roots. (4)
- For what values of c does the equation $c(x^2 + 1) = 5x$ have equal roots? (4)
- Find b , given that the equation $(bx)^2 + (2 - 2b)x + 4 = 0$ has equal roots. (4)
- Find w if the equation $(4w - 1)x^2 + (2w + 1)x + 1 = 0$ has equal roots. Find the nature of the roots when w lies between these values. (3,2)
- Determine the range of values of v for which the equation $x^2 + x(3 - v) - v + 6 = 0$ has real roots. (5)
- Show that the roots of the equation $x^2 + 6x + 11 = n(2x + 7)$ are unreal if $-2 < n < 1$. (5)
- Prove that the equation $y^2 + (t + 2)y + (2t + 1) = 0$ has real roots when $t \leq 0$ or $t \geq 4$. (5)
- Prove that the equation $(m + 2)x^2 - (3m + 2)x + 2m = 0$ has real roots for all values of m , $m \in \mathbb{R}$. (5)
- Prove that the roots of the equation $(2b - 3)x^2 + 2(b + 1)x + 1 = 0$ are real provided b is real. (5)
- Show that the roots of $t(x + 4)(x + 1) = 9x$ are unreal if $1 < t < 9$. (5)

11. Show that the line $y = 4x + 3$ is a tangent to the parabola $f(x) = x^2 + 7$. (3)

12. For what value of c is the line $y = x + c$ a tangent to the parabola $y = 2x^2 + 5x + 3$? (5)

13. For what value(s) of m is the line $y = mx + 1$ a tangent to the parabola $g(x) = x^2 + x + 5$. (5)

14. Express $x^2 + 7x + 25$ in the form $(x + b)^2 + c$. State the minimum value of $x^2 + 7x + 25$ and justify your answer. (3)

15. By expressing $k(x) = 12 - x - x^2$ in the form $a - (x - b)^2$ determine the maximum value of k . (3)

16. Express $x^2 - 5x + 9$ in the form $(x + a)^2 + b$. State the maximum value of $\frac{2}{x^2 - 5x + 9}$. (3)

17. Prove that $6x^2 - 3x + 1 \geq 0.625$ for all real values of x . (3)

18. Obtain the equation of the parabola which has roots -2 and 5 and which passes through the point $(2,30)$. (3)

19. Find the equation of the parabola which passes through the origin and has a turning point at $(-3, -18)$. (4)

20. Find the equation of the parabola which has a minimum turning point at $(-2, 0)$ and which cuts the y -axis at $(0, 2)$. (3)

21. The parabola $f(x)$ has a turning point at $(3, 5)$ and cuts the y -axis at $(0, 12)$. Sketch the parabolas $y = f(x)$, $y = f(x) - 5$ and $y = f(x + 2)$. (5)

22. A parabola passes through the points $(0, 8)$, $(2, -1)$ and $(4, -1)$. Find the equation of the parabola. (4)

PARABOLAS**Basic skills****Answers**1. $p = 6$ or -2 2. $c = 2.5$ or -2.5 3. $b = \frac{1}{3}$ or -1 4. $w = \frac{1}{2}$ or $\frac{5}{2}$; $\frac{1}{2} < w < \frac{5}{2}$, No roots5. $v < -3$ or $v > 5$ 6. Show $b^2 - 4ac < 0$ 7. Show $b^2 - 4ac \geq 0$ 8. Show $b^2 - 4ac \geq 0$ 9. Show $b^2 - 4ac \geq 0$ 10. Show $b^2 - 4ac < 0$ 11. Equal roots \therefore Tangent12. $c = 1$ 13. $m = -3$ or 5 14. $b = \frac{7}{2}$, $c = 12\frac{3}{4}$ Min T.P ($-\frac{7}{2}$, $12\frac{3}{4}$)15. Max T.P ($\frac{1}{2}$, $12\frac{1}{4}$)16. $a = -\frac{5}{2}$, $b = 2\frac{3}{4}$, Max value = $\frac{8}{11}$ 17. Show $b^2 - 4ac < 0$ 18. $y = -\frac{5}{2}(x + 2)(x - 5)$ 19. $y = -x(x - 6)$ 20. $y = \frac{1}{2}x^2 + 2x + 2$

21. Sketch the graphs

22. $y = \frac{9}{8}x^2 - \frac{27}{4}x + 8$